

 1

Building an All-Channel
Bluetooth Monitor

Michael Ossmann & Dominic Spill

 2

I'm Mike

Institute for Telecommunication Sciences
mike@ossmann.com

 3

I'm Dominic

University College London
Imperial College London
dspill@doc.ic.ac.uk

 4

Certain commercial equipment, materials, and
software are sometimes identified to specify
technical aspects of the reported procedures and
results. In no case does such identification imply
recommendations or endorsement by the U.S.
Government, its departments, or its agencies; nor
does it imply that the equipment, materials, and
software identified are the best available for this
purpose.

 5

Sniffing Bluetooth is Hard

 6

About Bluetooth

●PAN technology
●2.4 GHz ISM band
●Frequency hopping

 7

79 MHz

●Bluetooth hops through 79 channels
●Each channel is 1 MHz wide
●A piconet hops 1600 times per second

 8

Clocks

●Every Bluetooth device has a clock
●Clocks increment 3200 times per second
●Hops happen every other clock cycle
●The master device dictates the clock of the piconet
●Subordinate devices keep track of their clocks' offset

from the master's

 9

Addresses

●BD_ADDR is like a MAC address
●48 bits
●Comprised of three parts

● NAP
● UAP
● LAP

 10

Possible Sniffing Methods

●Protocol analyzer
● $10,000

●Bluetooth OEM
● < $10

●Wideband receiver
● USRP ($1000)
● USRP2 ($1800)

 11

Protocol Analyzer

●Test equipment for Bluetooth
manufacturers/developers

●Expensive or illegal
● $10,000
● Flash CSR dongles

●Doesn't do what we want
● Sniff any connection
● Sniff all connections

 12

Bluetooth OEM

●Flashable chipset
●Custom firmware
●Hardware implementation

● Cannot sniff arbitrarily
●Not wideband

● One channel at a time

 13

Software Radio
(GNURadio/USRP)

●Wideband receiver
● USRP - 8MHz
● USRP2 - 25MHz

●Software signal processing
● Can do whatever we like with data

●This has potential...

 14

Sniffing (Single Channel)

 15

How?

●Step 1: Capture a packet and demodulate
● Device debug mode and visual tools helpful

 16

Woo Packets!

●Now let's get some data
●LAP from access code

 17

Demo: Finding Packets

●btrx.py -i headset3.cfile (or similar)

 18

UAP discovery

●Not simple like LAP
●Used for checksum calculations

● Simple algorithms
● Run in reverse

●Data whitening
● 64 clock values
● 64 candidate UAPs

 19

 20

UAP retrieval

 21

Demo: Retrieving the UAP

●btrx.py -d 16 -i headset2.cfile -l 24d952 (or similar)

 22

Payload Data

●Got both UAP and LAP
● Sniff packets from piconet
● Verify header / payload checksums
● Discover lower clock bits

●Half way to full clock
● Hopping

 23

Extending to Several
Channels

 24

One Input, Several Outputs

●USRP can do 8 channels
●USRP2 can do 25

 25

 26

Demo: Finding Packets on Multiple Channels

●multibtrx.py -d 8 -i headset1.cfile -f 2476.5e6 -l
24d952 (or similar)

 27

●Use 10 USRPs
●Use 4 USRP2s (or 3 USRP2s and 1 USRP)

 28

CPU requirements

●Roughly speaking, 1 CPU core can decode 1 channel
in real time

●79 channels == 79 cores
●Bus/storage speeds must also be considered

 29

Predicting the Hopping
Pattern

 30

Why?

●Can't sniff all channels
● Bandwidth limited to 25MHz

●Processing speed
● One channel per core is slow

●Active attacks
● Hopping is a prerequisite

●It's fun
● It's a challenge

 31

Hopping Sequence

●Pseudo-random sequence based on
● CLK1-27 of master
● Low 28 bits of BD_ADDR (LAP and part of UAP)

●If you know these two values, you can predict the
sequence

 32

How?

●Algorithm given in Bluetooth spec
● LAP / UAP
● Clock

●Generate entire pattern
● Loops in ~24hrs

●Where in the pattern are we?
● Know lower 6 bits and corresponding channels
● Test packet gaps and channels

 33

Demo: Finding the Clock

●btrx.py -d 16 -i headset2.cfile -l 24d952 -n 74 (or
similar)

 34

Intentional Aliasing

 35

Sampling 3 MHz

One of the fundamental tools of digital signal processing (DSP) is the sampling of analog signals.
While there are some DSP applications that are entirely digital, most DSP systems include both
analog and digital components. For example, the sound card on your computer can receive an
analog signal from a microphone and sample it to produce a digital signal. It can also convert a
digital signal into an analog signal destined for speakers. Software radio systems operate in
essentially the same way but with antennas instead of microphones and speakers.

Digital sampling is the very simple process of measuring the value of something at many discrete

moments over time, usually at regular intervals. If you measure the rainfall at your home every
day, you are acting as a digital sampler; nature provides the analog signal (the rainfall that varies
continuously over time), and you convert it by periodic sampling into a digital signal (a sequence
of discrete values). Your sound card and microphone measure variations in air pressure, but,
instead of sampling at a rate of one sample per day, they sample at perhaps 48 thousand
samples per second. The USRP2 we use for Bluetooth monitoring samples radio signals at a
rate of 100 million samples per second.

Let's say we have an ADC (Analog to Digital Converter) that samples at a rate of 8 million samples
per second (Msps). If a pure sine wave (the blue analog signal) comes along with a frequency of
3 MHz (3 million cycles per second), our sampler will produce a stream of digital values like so
(the red dots). 3 MHz is 3/8 of our sample rate, so there are 8 samples taken every 3 periods of
the analog signal. We can clearly see that the digital (red) signal repeats itself every 8 samples,
and, even without the blue line present, it isn't hard to envision the 3 MHz analog signal that the
red sequence represents (with a period of 2.67 samples). So now we have a way (the red dots)
to digitally represent a pure sine wave with a frequency of 3 MHz. If an analog signal were to
arrive with a frequency of 3.2 MHz, the resultant digital signal would certainly be distinct from this
one (although the difference might not be apparent for the first few samples).

 36

Sampling 5 MHz

Now suppose that a 5 MHz analog signal comes along (the dashed green
line). Our 8 Msps sampler converts the analog signal into a digital signal
like so (the red dots). Since 5 MHz is 5/8 of our sample rate, there are 8
samples taken every 5 periods of the analog signal. The digital signal once
again clearly repeats itself every 8 samples. This sequence of values (the
red dots) can be thought of as a digital representation of a 5 MHz sine
wave. The sequence is distinct from those that represent other nearby
frequencies such as 5.2 MHz.

You might notice, however, that the digital sequence that represents a 5 MHz
sine wave looks familiar. It is the same sequence that represents a 3 MHz
sine wave!

 37

Aliases

In the analog domain, a 3 MHz signal is quite distinct from a 5 MHz signal, but, in the digital domain, the two
are indistinguishable (with a sample rate of 8 Msps). If you take the time to draw a sine wave with a
frequency of 11 MHz (you'll need a finer pen and steadier hand than mine), you'll find that it, too, passes
through the same red dots. In fact, the set of frequencies that share these points is infinite and includes 3,
5, 11, 13, 19, 21, 27, 29, and 36 MHz and so forth. These frequencies are all 3 MHz away from integer
multiples of the sample rate (8 Msps).

Our digital sequence (the red dots) exhibits ambiguous frequency. In the analog domain, this would be weird,
but, in the digital domain, it is completely normal. Every digital sequence can be thought of as a set of
ambiguous frequency components. There is no such thing as a digital signal with a single frequency
because every frequency component is really an infinite set of frequencies. The frequencies aren't
completely ambiguous, however. (A 3.2 MHz signal can be distinguished from a 3 MHz signal.) They are
only ambiguous with respect to integer multiples of the sample rate.

This is the basis of the Nyquist sampling theorem. One way to state the theorem is that, in order to
unambiguously represent an analog signal in the digital domain, you have to sample at a rate that is at
least twice the frequency of your analog signal of interest. In other words, our 8 MHz sampler is only able
to unambiguously represent signals with frequencies lower than 4 MHz. (A 4.1 MHz signal would be
indistinguishable from a 3.9 MHz signal, and a 6.2 MHz signal would be indistinguishable from 1.8 MHz.)

If we were comfortably above the Nyquist limit, that is, if our signal of interest were well below 4 MHz, we
might run into trouble if a neighboring signal between 4 and 8 MHz showed up. In the analog domain, the
neighboring signal wouldn't interfere with our signal below 4 MHz. In the digital domain, however, we
might detect a 5 MHz signal, and it would directly interfere with a 3 MHz signal. Because of the ambiguity
in the digital domain, the 5 MHz signal would be indistinguishable from a 3 MHz signal.

When a 5 MHz analog signal produces an apparent 3 MHz signal in the digital domain, we call the apparent 3
MHz signal an "alias" of the 5 MHz signal. The signal has an infinite number of aliases at 3 MHz, 11, 13,
19, 21, and so forth. This phenomenon of "aliasing" is usually considered a problem to be avoided,
typically by filtering in the analog domain prior to sampling.

 38

If our signal of interest is entirely below 4 MHz, then we can use an analog
"anti-aliasing" filter that filters out all frequencies above 4 MHz, allowing
only lower frequencies to pass through (a low-pass filter) to the ADC. By
using this anti-aliasing filter before sampling, we can effectively eliminate
any ambiguity in the digital domain. If we detect a digital frequency
component at 3 MHz, we can be certain that there really was a 3 MHz
analog signal and that we are not seeing an alias of an analog signal at 5
MHz or higher. In this way we are able to eliminate interference from
analog signals above 4 MHz.

 39

Band-Pass Sampling

Now let's suppose that we would like to sample an analog signal of interest
between 4 and 8 MHz. As long as the signal does not contain frequency
components beyond these boundaries, we should be able to sample it with
our 8 Msps ADC. In the digital domain, our signal is indistinguishable from
signals in the 0 to 4 MHz range, the 8 to 12 MHz range, and so forth, but
frequencies between 4 and 8 MHz are distinguishable from each other. To
ensure that we receive only those signals that are between 4 and 8 MHz,
we can use an anti-aliasing filter that filters out frequencies below 4 MHz as
well as those above 8 MHz (a band-pass filter). Because the analog signal
arriving at the ADC is limited by such a filter, this technique is called band-
pass sampling. We can band-pass sample signals in any 4 MHz wide
range bordered by an integer multiple of the sample rate (4 to 8 MHz,8 to
12 MHz, 12 to 16 MHz, and so on), but at some point there is an absolute
maximum due to the limited precision of our ADC timing.

A more general statement of the Nyquist sampling theorem that allows for
band-pass sampling is this: In order to unambiguously represent an analog
signal in the digital domain, you have to sample at a rate that is at least
twice the bandwidth of your analog signal of interest. Bandwidth is a
measure of the range of frequency components of a signal. A signal that
fits between 4 and 8 MHz has a bandwidth of no more than 4 MHz,
therefore it can be sampled by an ADC operating at a sample rate of at
least 8 Msps.

 40

Frequency Hopping

Bluetooth is a frequency hopping system. At any given moment, a Bluetooth
piconet uses a single channel with a bandwidth of 1 MHz, but the network
switches among many different channels (adjacent 1 MHz bands) 1600
times per second. A normal Bluetooth system uses 79 channels at
frequencies of 2402 MHz through 2480 MHz, but let's suppose we wanted
to monitor an unusual Bluetooth piconet that uses only 8 channels at much
lower frequencies between 0 and 8 MHz (channel one is centered at 0.5
MHz, channel 2 at 1.5 MHz, and so forth).

If we only wanted to monitor channels 1 through 4, we could use a low-pass
anti-aliasing filter. To monitor channels 5 through 8, however, we would
need a band-pass anti-aliasing filter. Nyquist says that we can only monitor
one of these two sets of channels at a time.

 41

Aliased Frequency Hopping

Without filtering the two ranges from each other, our 8 Msps sampler would
fail to distinguish channel 1 from channel 8, channel 2 from channel 7, and
so forth. If a transmission on channel 1 occurs at the same time as a
transmission on channel 8, they would interfere with each other in the
digital domain.

Lucky for us, a Bluetooth piconet never transmits on more than one channel at
a time! If we are willing to live with the fact that we can't distinguish certain
channels from one another, there is nothing stopping us from monitoring all
8 channels with our 8 Msps ADC. We just need a double wide anti-aliasing
filter, a low-pass filter at 8 MHz. Although they are usually thought of as
things to be avoided, aliases can be our friends. When we monitor channel
1 with this system, we sometimes receive frames transmitted on channel 1
and sometimes receive aliases of frames transmitted on channel 8. We
can't tell them apart, but they should never interfere with each other.

 42

Aliases, Aliases, and More Aliases

We could go crazy and extend this idea further. If our ADC only operates at 4
Msps, we could use the same technique (with a low-pass filter at 8 MHz)
and double up our aliased channels a second time. Imagine folding a piece
of paper over on itself once and then folding it over a second time.
Channels 1, 4, 5, and 8 would all be aliased on top of each other (and thus
indistinguishable from one another), and Channels 2, 3, 6, and 7 would be
aliased on top of each other as well. Our monitoring software would lose
even more information about which channel is which, but it would only have
to monitor two channels in the digital domain. The ultimate extension of
this technique would be to cut the sample rate in half yet again. If we
operate our ADC at 2 Msps (retaining the 8 MHz low-pass anti-aliasing
filter), all 8 channels would be aliased on top of each other, and our
monitoring system would see them all as one channel in the digital domain.

 43

 44

The Good (more channels), the Bad (more noise), and the Ugly (more
interference)

There is a reason not to use the aliasing technique any more than we have to,
however. Every time we increase the number of overlapping aliases, we
double up the bad along with the good. If there is interference, say from an
802.11 network, on a particular channel, the aliases of the interfering signal
can affect multiple channels in the digital domain. In the extreme case, if
we alias all Bluetooth channels onto a single digital channel, it only takes
one interferer on any single channel to ruin our ability to receive
transmissions on every channel (which is exactly the situation that
frequency hopping is intended to avoid). The 2.4 GHz ISM band tends to
be busy, so this problem is very likely. Even without the presence of
interference, each alias adds more background noise, reducing our signal
to noise ratio, thereby increasing the likelihood of decoding errors. If we
want to maximize our ability to correctly decode Bluetooth transmissions,
especially if we want to monitor more than one piconet at once, we should
use the aliasing technique as little as possible.

 45

Our Method

This example of an 8 channel Bluetooth piconet is a simplified version of our
real world challenge. Our goal is to monitor 79 channels operating at a
much higher frequency. Our principal limitation is that our fastest software
radio system, the USRP2, is capable of delivering a maximum bandwidth of
25 MHz to the host computer. That means that our software can see only
25 out of 79 channels unambiguously. By configuring the USRP2 to alias
four 25 MHz bands on top of each other, however, we can deliver all 79
channels to the host computer with each of the 25 distinct channels in the
digital domain carrying 3 or 4 aliased channels from the analog domain.

This requires two modifications:

 46

The RFX2400 daughterboard is modified by removing the 20 MHz analog
anti-aliasing filter from the receive path.

 47

The USRP2 FPGA code is modified by zeroing some coefficients in the
halfband decimators (only effective when using a decimation rate of 4).

 48

Demo: Aliased Hopping

multibtrx.py -pa2d 4 -i alias1.cfile -f 2440e6 -l 24d952
(or similar)

 49

Security Implications

Non-discoverable devices are just as easily monitored
as discovereble devices

Knowledge of the clock (thus hopping sequence and
whitening) opens the door to active attacks

Got encryption? Most devices don't.

 50

Q&A

The gr-bluetooth project (our code) is located at
http://gr-bluetooth.sf.net/

 51

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

